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Deep Learning for Regression: Train convolutional neural networks (also
known as ConvNets, CNNs) for regression tasks

You can now perform regression for numeric targets (responses) using convolutional
neural networks. While defining your network, specify regressionLayer as the last
layer. Specify the training parameters using the trainingOptions function. Train your
network using the trainNetwork function. To try a regression example showing how
to predict angles of rotation of handwritten digits, see “Train a Convolutional Neural
Network for Regression”.

Pretrained Models: Transfer learning with pretrained CNN models
AlexNet, VGG-16, and VGG-19, and import models from Caffe
(including Caffe Model Zoo)

For pretrained convolutional neural network (CNN) models, AlexNet, VGG-16, and
VGG-19, from the MATLAB® Add-Ons menu, you can now install the following add-ons:

• Neural Network Toolbox™ Model for AlexNet Network
• Neural Network Toolbox™ Model for VGG-16 Network
• Neural Network Toolbox™ Model for VGG-19 Network

You can access the models using the functions alexnet, vgg16, and vgg19. These
models are SeriesNetwork objects. You can use these pretrained models for classification
and transfer learning.

You can also import other pretrained CNN models from Caffe by using the
importCaffeNetwork function. This function imports models as a SeriesNetwork
object. You can then use these models for classifying new data.

Alternatively, you can import CNN layers from Caffe by using the importCaffeLayers
function. This function imports the layer architecture as a Layer array. You can then
specify the training options using the trainingOptions function and train this network
using the trainNetwork function.

For both importCaffeNetwork and importCaffeLayers, you can install the Neural
Network Toolbox™ Importer for Caffe Models add-on from the MATLAB® Add-Ons
menu.
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Deep Learning with Cloud Instances: Train convolutional neural networks
using multiple GPUs in MATLAB and MATLAB Distributed Computing
Server for Amazon EC2

You can use MATLAB to perform deep learning in the cloud using Amazon Elastic
Compute Cloud (Amazon EC2®) with new P2 instances and data stored in the cloud. If
you do not have a suitable GPU available for faster training of a convolutional neural
network, you can use Amazon Elastic Compute Cloud instead. Try different numbers of
GPUs per machine to accelerate training. You can compare and explore the performance
of multiple deep neural network configurations to find the best tradeoff of accuracy and
memory use. Deep learning in the cloud also requires Parallel Computing Toolbox™. For
details, see “Deep Learning in the Cloud”.

Deep Learning with Multiple GPUs: Train convolutional neural networks
on multiple GPUs on PCs (using Parallel Computing Toolbox) and clusters
(using MATLAB Distributed Computing Server)

You can now train convolutional neural networks (ConvNets) on multiple GPUs and on
clusters. Specify the required hardware using the ExecutionEnvironment name-value
pair argument in the call to the trainingOptions function.

Deep Learning with CPUs: Train convolutional neural networks on CPUs
as well as GPUs

You can now train a convolutional neural network (ConvNet) on a CPU using the
trainNetwork function. If there is no available GPU, by default, then trainNetwork
uses a CPU to train the network. You can also train a ConvNet on multiple CPU cores on
your desktop or a cluster using 'ExecutionEnvironment','parallel'.

For specifying the hardware on which to train the network, and for system requirements,
see the ExecutionEnvironment name-value pair argument on trainingOptions.

Deep Learning Visualization: Visualize the features ConvNet has learned
using deep dream and activations

deepDreamImage synthesizes images that strongly activate convolutional neural
network (ConvNet) layers using a version of the deep dream algorithm. Visualizing
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these images highlights the features your trained ConvNet has learned, helping you
understand and diagnose network behavior. For examples, see “Deep Dream Images
Using AlexNet” and “Visualize Features of a Convolutional Neural Network”.

You can also display network activations on an image to investigate features the network
has learned to identify. To try an example, see “Visualize Activations of a Convolutional
Neural Network”.

table Support: Use data in tables for training of and inference with
ConvNets

The trainNetwork function and predict, activations, and classify methods now accept
data stored in a table for classification and regression problems. For details on how to
specify your data, see the input argument descriptions on the function and method pages.

Progress Tracking During Training: Specify custom functions for plotting
accuracy or stopping at a threshold

When training convolutional neural networks, you can specify one or more custom
functions to call at each iteration during training. You can access and act on information
during training, for example, to plot accuracy, or stop training early based on a
threshold. Specify the functions using the OutputFcn name-value pair argument
in trainingOptions. For examples, see “Plot Training Accuracy During Network
Training” and “Plot Progress and Stop Training at Specified Accuracy”.

Deep Learning Examples: Get started quickly with deep learning

New examples and topics help you get started quickly with deep learning in MATLAB.

To find out what tasks you can do, see “Deep Learning in MATLAB”. To learn about
convolutional neural networks and how they work in MATLAB, see:

• “Introduction to Convolutional Neural Networks”
• “Specify Layers of Convolutional Neural Network”
• “Set Up Parameters and Train Convolutional Neural Network”

New examples include:

• “Try Deep Learning in 10 Lines of MATLAB Code”
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• “Create Simple Deep Learning Network for Classification”
• “Transfer Learning and Fine-Tuning of Convolutional Neural Networks”
• “Transfer Learning Using AlexNet”
• “Feature Extraction Using AlexNet”
• “Deep Dream Images Using AlexNet”
• “Visualize Activations of a Convolutional Neural Network”
• “Visualize Features of a Convolutional Neural Network”
• “Create Typical Convolutional Neural Networks”
• “Plot Training Accuracy During Network Training”
• “Plot Progress and Stop Training at Specified Accuracy”
• “Resume Training from a Checkpoint Network”
• “Train a Convolutional Neural Network for Regression”
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Deep Learning with CPUs: Run trained CNNs to extract features, make
predictions, and classify data on CPUs as well as GPUs

You can choose a CPU to run a pretrained network for extracting features using
activations, predicting image class scores using predict, and estimating image
classes using classify. To specify the hardware on which to run the network, use the
'ExecutionEnvironment' name-value pair argument in the call to the specific method.

Training a convolutional neural network (ConvNet) requires a GPU. To train a ConvNet,
or to run a pretrained network on a GPU, you must have Parallel Computing Toolbox
and a CUDA®-enabled NVIDIA® GPU with compute capability 3.0 or higher.

Deep Learning with Arbitrary Sized Images: Run trained CNNs on images
that are different sizes than those used for training

You can run a trained convolutional neural network on arbitrary image sizes to extract
features using the activations method with channels output option. For other output
options, the sizes of the images you use in activations must be the same as the sizes
of the ones used for training. To specify the channels output option, use the OutputAs
name-value pair argument in the call to activations.

Performance: Train CNNs faster when using ImageDatastore object

ImageDatastore allows batch-reading of JPG or PNG image files using prefetching.
This feature enables faster training of convolutional neural networks (ConvNets). If you
use a custom function for reading the images, prefetching does not occur.

Deploy Training of Models: Deploy training of a neural network model
via MATLAB Compiler or MATLAB Compiler SDK

Use MATLAB Runtime to deploy functions that can train a model. You can deploy
MATLAB code that trains neural networks as described in Create Standalone
Application from Command Line and Package Standalone Application with Application
Compiler App.

The following methods and functions are NOT supported in deployed mode:

• Training progress dialog, nntraintool.
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• genFunction and gensim to generate MATLAB code or Simulink® blocks
• view method
• nctool, nftool, nnstart, nprtool, ntstool
• Plot functions (such as plotperform, plottrainstate, ploterrhist, plotregression, plotfit,

and so on)

generateFunction Method: generateFunction generates code for
matrices by default

'MatrixOnly' name-value pair argument of generateFunction method has no effect.
generateFunction by default generates code for only matrices.

Compatibility Considerations

You do not need to specify for generateFunction to generate code for matrices. Previously,
you needed to specify 'MatrixOnly',true.

alexnet Support Package: Download and use pre-trained convolutional
neural network (ConvNet)

You can use pretrained Caffe version of AlexNet convolutional neural network. Download
the network from the Add-Ons menu.

For more information about the network, see Pretrained Convolutional Neural Network.
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Deep Learning: Train deep convolutional neural networks with built-in
GPU acceleration for image classification tasks (using Parallel Computing
Toolbox)

The new functionality enables you to

• Construct convolutional neural network (CNN) architecture (see Layer).
• Specify training options using trainingOptions.
• Train CNNs using trainNetwork for data in 4D arrays or ImageDatastore.
• Make predictions of class labels using a trained network using predict or classify.
• Extract features from a trained network using activations.
• Perform transfer learning. That is, retrain the last fully connected layer of an existing

CNN on new data.

NOTE: This feature requires the Parallel Computing Toolbox and a CUDA-
enabled NVIDIA GPU with compute capability 3.0 or higher.
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Autoencoder neural networks for unsupervised learning of features using
the trainAutoencoder function

You can train autoencoder neural networks to learn features using the trainAutoencoder
function. The trained network is an Autoencoder object. You can use the trained
autoencoder to predict the inputs for new data, using the predict method. For all the
properties and methods of the object, see the Autoencoder class page.

Deep learning using the stack function for creating deep networks from
autoencoders

You can create deep networks using the stack method. To create a deep network, after
training the autoencoders, you can

1 Extract features from autoencoders using the encode method.
2 Train a softmax layer for classification using the trainSoftmaxLayer function.
3 Stack the encoders and the softmax layer to form a deep network, and train the deep

network.

The deep network is a network object.

Improved speed and memory efficiency for training with Levenberg-
Marquardt (trainlm) and Bayesian Regularization (trainbr)
algorithms

An optimized MEX version of the Jacobian backpropagation algorithm allows faster
training and reduces memory requirements for training static and open-loop networks
using the trainlm and trainbr functions.

Cross entropy for a single target variable

The crossentropy function supports binary encoding, that is, when there are only two
classes and N = 1 (N is the number of rows in the targets input argument).
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Progress update display for parallel training

The Neural Network Training tool (nntraintool) now displays progress updates when
conducting parallel training of a network.
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Training panels for Neural Fitting Tool and Neural Time Series Tool
Provide Choice of Training Algorithms

The training panels in the Neural Fitting and Neural Time Series tools now let you select
a training algorithm before clicking Train. The available algorithms are:

• Levenberg-Marquardt (trainlm)
• Bayesian Regularization (trainbr)
• Scaled Conjugate Gradient (trainscg)

For more information on using Neural Fitting, see Fit Data with a Neural Network.

For more information on using Neural Time Series, see Neural Network Time Series
Prediction and Modeling.

Bayesian Regularization Supports Optional Validation Stops

Because Bayesian-Regularization with trainbr can take a long time to stop, validation
used with Bayesian-Regularization allows it to stop earlier, while still getting some of the
benefits of weight regularization. Set the training parameter trainParam.max_fail
to specify when to make a validation stop. Validation is disabled for trainbr by default
when trainParam.max_fail is set to 0.

For example, to train as before without validation:

[x,t] = house_dataset;

net = feedforwardnet(10,'trainbr');

[net,tr] = train(net,x,t);

To train with validation:

[x,t] = house_dataset;

net = feedforwardnet(10,'trainbr');

net.trainParam.max_fail = 6;

[net,tr] = train(net,x,t);

Neural Network Training Tool Shows Calculations Mode

Neural Network Training Tool now shows its calculations mode (i.e., MATLAB, GPU) in
its Algorithms section.
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Function code generation for application deployment of neural network
simulation (using MATLAB Coder, MATLAB Compiler, and MATLAB Builder
products)

• “New Function: genFunction ” on page 8-2
• “Enhanced Tools” on page 8-4

New Function: genFunction

The function genFunction generates a stand-alone MATLAB function for simulating any
trained neural network and preparing it for deployment in many scenarios:

• Document the input-output transforms of a neural network used as a calculation
template for manual reimplementations of the network

• Create a Simulink block using the MATLAB Function block
• Generate C/C++ code with MATLAB Coder™ codegen
• Generate efficient MEX-functions with MATLAB Coder codegen
• Generate stand-alone C executables with MATLAB Compiler™ mcc
• Generate C/C++ libraries with MATLAB Compiler mcc
• Generate Excel® and .COM components with MATLAB Builder™ EX mcc options
• Generate Java components with MATLAB Builder JA mcc options
• Generate .NET components with MATLAB Builder NE mcc options

genFunction(net,'path/name') takes a neural network and file path and produces a
standalone MATLAB function file 'name.m'.

genFunction(_____,'MatrixOnly','yes') overrides the default cell/matrix
notation and instead generates a function that uses only matrix arguments compatible
with MATLAB Coder tools. For static networks the matrix columns are interpreted as
independent samples. For dynamic networks the matrix columns are interpreted as a
series of time steps. The default value is 'no'.

genFunction(_____,'ShowLinks','no') disables the default behavior of displaying
links to generated help and source code. The default is 'yes'.

Here a static network is trained and its outputs calculated.
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[x,t] = house_dataset;

houseNet = feedforwardnet(10);

houseNet = train(houseNet,x,t);

y = houseNet(x);

A MATLAB function with the same interface as the neural network object is generated
and tested, and viewed.

genFunction(houseNet,'houseFcn');

y2 = houseFcn(x);

accuracy2 = max(abs(y-y2))

edit houseFcn

The new function can be compiled with the MATLAB Compiler tools (license required) to
a shared/dynamically linked library with mcc.

mcc -W lib:libHouse -T link:lib houseFcn

Next, another version of the MATLAB function is generated which supports only matrix
arguments (no cell arrays). This function is tested. Then it is used to generate a MEX-
function with the MATLAB Coder tool codegen (license required) which is also tested.
genFunction(houseNet,'houseFcn','MatrixOnly','yes');

y3 = houseFcn(x);

accuracy3 = max(abs(y-y3))

x1Type = coder.typeof(double(0),[13 Inf]); % Coder type of input 1

codegen houseFcn.m -config:mex -o houseCodeGen -args {x1Type}

y4 = houseCodeGen(x);

accuracy4 = max(abs(y-y4))

Here, a dynamic network is trained and its outputs calculated.

[x,t] = maglev_dataset;

maglevNet = narxnet(1:2,1:2,10);

[X,Xi,Ai,T] = preparets(maglevNet,x,{},t);

maglevNet = train(maglevNet,X,T,Xi,Ai);

[y,xf,af] = maglevNet(X,Xi,Ai);

Next, a MATLAB function is generated and tested. The function is then used to create a
shared/dynamically linked library with mcc.

genFunction(maglevNet,'maglevFcn');

[y2,xf,af] = maglevFcn(X,Xi,Ai);

accuracy2 = max(abs(cell2mat(y)-cell2mat(y2)))

mcc -W lib:libMaglev -T link:lib maglevFcn
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Next, another version of the MATLAB function is generated which supports only matrix
arguments (no cell arrays). This function is tested. Then it is used to generate a MEX-
function with the MATLAB Coder tool codegen, and the result is also tested.
genFunction(maglevNet,'maglevFcn','MatrixOnly','yes');

x1 = cell2mat(X(1,:)); % Convert each input to matrix

x2 = cell2mat(X(2,:));

xi1 = cell2mat(Xi(1,:)); % Convert each input state to matrix

xi2 = cell2mat(Xi(2,:));

[y3,xf1,xf2] = maglevFcn(x1,x2,xi1,xi2);

accuracy3 = max(abs(cell2mat(y)-y3))

x1Type = coder.typeof(double(0),[1 Inf]); % Coder type of input 1

x2Type = coder.typeof(double(0),[1 Inf]); % Coder type of input 2

xi1Type = coder.typeof(double(0),[1 2]); % Coder type of input 1 states

xi2Type = coder.typeof(double(0),[1 2]); % Coder type of input 2 states

codegen maglevFcn.m -config:mex -o maglevNetCodeGen -args {x1Type x2Type xi1Type xi2Type}

[y4,xf1,xf2] = maglevNetCodeGen(x1,x2,xi1,xi2);

dynamic_codegen_accuracy = max(abs(cell2mat(y)-y4))

Enhanced Tools

The function genFunction is introduced with a new panel in the tools nftool, nctool,
nprtool and ntstool.

The advanced scripts generated on the Save Results panel of each of these tools includes
an example of deploying networks with genFunction.
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For more information, see Deploy Neural Network Functions.

Enhanced multi-timestep prediction for switching between open-loop and
closed-loop modes with NARX and NAR neural networks

Dynamic networks with feedback, such as narxnet and narnet neural networks, can
be transformed between open-loop and closed-loop modes with the functions openloop
and closeloop. Closed-loop networks make multistep predictions. In other words, they
continue to predict when external feedback is missing, by using internal feedback.

It can be useful to simulate a trained neural network up the present with all the known
values of a time-series in open-loop mode, then switch to closed-loop mode to continue the
simulation for as many predictions into the future as are desired. It is now much easier
to do this.

Previously, openloop and closeloop transformed the neural network between those
two modes.

net = openloop(net)

net = closeloop(net)
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This is still the case. However, these functions now also support the transformation
of input and layer delay state values between open- and closed-loop modes, making
switching between closed-loop to open-loop multistep prediction easier.

[net,xi,ai] = openloop(net,xi,ai);

[net,xi,ai] = closeloop(net,xi,ai);

Here, a neural network is trained to model the magnetic levitation system in default
open-loop mode.

[X,T] = maglev_dataset;

net = narxnet(1:2,1:2,10);

[x,xi,ai,t] = preparets(net,X,{},T);

net = train(net,x,t,xi,ai);

view(net)

Then closeloop is used to convert the network to closed-loop form for simulation.

netc = closeloop(net);

[x,xi,ai,t] = preparets(netc,X,{},T);

y = netc(x,xi,ai);

view(netc)

Now consider the case where you might have a record of the Maglev’s behavior for 20
time steps, but then want to predict ahead for 20 more time steps beyond that.

Define the first 20 steps of inputs and targets, representing the 20 time steps where the
output is known, as defined by the targets t. Then the next 20 time steps of the input are
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defined, but you use the network to predict the 20 outputs using each of its predictions
feedback to help the network perform the next prediction.

x1 = x(1:20);

t1 = t(1:20);

x2 = x(21:40);

Then simulate the open-loop neural network on this data:

[x,xi,ai,t] = preparets(net,x1,{},t1);

[y1,xf,af] = net(x,xi,ai);

Now the final input and layer states returned by the network are converted to closed-loop
form along with the network. The final input states xf, and layer states af, of the open-
loop network become the initial input states xi, and layer states ai, of the closed-loop
network.

[netc,xi,ai] = closeloop(net,xf,af);

Typically, preparets is used to define initial input and layer states. Since these have
already been obtained from the end of the open-loop simulation, you do not need
preparets to continue with the 20 step predictions of the closed-loop network.

[y2,xf,af] = netc(x2,xi,ai);

Note that x2 can be set to different sequences of inputs to test different scenarios for
however many time steps you would like to make predictions. For example, to predict the
magnetic levitation system’s behavior if 10 random inputs were used:

x2 = num2cell(rand(1,10));

[y2,xf,af] = netc(x2,xi,ai);

For more information, see Multistep Neural Network Prediction.

Cross-entropy performance measure for enhanced pattern recognition
and classification accuracy

Networks created with patternnet now use the cross-entropy performance
measure (crossentropy), which frequently produces classifiers with fewer percentage
misclassifications than obtained using mean squared error.

See “Softmax transfer function in output layer gives consistent class probabilities for
pattern recognition and classification ” on page 8-8.

8-7

http://www.mathworks.com/help/releases/R2013b/nnet/ref/preparets.html
http://www.mathworks.com/help/releases/R2013b/nnet/ug/multistep-neural-network-prediction.html
http://www.mathworks.com/help/releases/R2013b/nnet/ref/crossentropy.html


R2013b

Softmax transfer function in output layer gives consistent class
probabilities for pattern recognition and classification

patternnet, which you use to create a neural network suitable for learning classification
problems, has been improved in two ways.

First, networks created with patternnet now use the cross-entropy performance
measure (crossentropy), which frequently produces classifiers with fewer percentage
misclassifications than obtained using mean squared error.

Second, patternnet returns networks that use the Soft Max transfer function (softmax)
for the output layer instead of the tansig sigmoid transfer function. softmax results
in output vectors normalized so they sum to 1.0, that can be interpreted as class
probabilities. (tansig also produces outputs in the 0 to 1 range, but they do not sum
to 1.0 and have to be manually normalized before being treated as consistent class
probabilities.)

Here a patternnet with 10 neurons is created, its performance function and diagram
are displayed.

net = patternnet(10);

net.performFcn

ans =

crossentropy

view(net)

The output layer’s transfer function is shown with the symbol for softmax.

Training the network takes advantage of the new crossentropy performance function.
Here the network is trained to classify iris flowers. The cross-entropy performance
algorithm is shown in the nntraintool algorithm section. Clicking the “Performance” plot
button shows how the network’s cross-entropy was minimized throughout the training
session.

[x,t] = iris_dataset;

8-8

http://www.mathworks.com/help/releases/R2013b/nnet/ref/patternnet.html
http://www.mathworks.com/help/releases/R2013b/nnet/ref/crossentropy.html
http://www.mathworks.com/help/releases/R2013b/nnet/ref/softmax.html
http://www.mathworks.com/help/releases/R2013b/nnet/ref/tansig.html
http://www.mathworks.com/help/releases/R2013b/nnet/ref/nntraintool.html


 

net = train(net,x,t);

Simulating the network results in normalized output. Sample 150 is used to illustrate
the normalization of class membership likelihoods:

y = net(x(:,150))

y  =

    0.0001

    0.0528

    0.9471

sum(y)

     1

The network output shows three membership probabilities with class three as by far
the most likely. Each probability value is between 0 and 1, and together they sum to
1 indicating the 100% probability that the input x(:,150) falls into one of the three
classes.

Compatibility Considerations

If a patternnet network is used to train on target data with only one row, the network’s
output transfer function will be changed to tansig and its outputs will continue to
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operate as they did before the softmax enhancement. However, the 1-of-N notation for
targets is recommended even when there are only two classes. In that case the targets
should have two rows, where each column has a 1 in the first or second row to indicate
class membership.

If you prefer the older patternnet of mean squared error performance and a sigmoid
output transfer function, you can specify this by setting those neural network object
properties. Here is how that is done for a patternnet with 10 neurons.

net = patternnet(10);

net.layers{2}.transferFcn = 'tansig';

net.performFcn = 'mse';

Automated and periodic saving of intermediate results during neural
network training

Intermediate results can be periodically saved during neural network training to a
.mat file for recovery if the computer fails or the training process is killed. This helps
protect the values of long training runs, which if interrupted, would otherwise need to be
completely restarted.

This feature can be especially useful for long parallel training sessions that are more
likely to be interrupted by computing resource failures and which you can stop only
with a Ctrl+C break, because the nntraintool tool (with its Stop button) is not available
during parallel training.

Checkpoint saves are enabled with an optional 'CheckpointFile' training argument
followed by the checkpoint file’s name or path. If only a file name is specified, it is placed
in the current folder by default. The file must have the .mat file extension, but if it is not
specified it is automatically added. In this example, checkpoint saves are made to a file
called MyCheckpoint.mat in the current folder.

[x,t] = house_dataset;

net = feedforwardnet(10);

net2 = train(net,x,t,'CheckpointFile','MyCheckpoint.mat');

22-Mar-2013 04:49:05 First Checkpoint #1: /WorkingDir/MyCheckpoint.mat

22-Mar-2013 04:49:06 Final Checkpoint #2: /WorkingDir/MyCheckpoint.mat

By default, checkpoint saves occur at most once every 60 seconds. For the short training
example above this results in only two checkpoints, one at the beginning and one at the
end of training.
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The optional training argument 'CheckpointDelay' changes the frequency of saves.
For example, here the minimum checkpoint delay is set to 10 seconds, for a time-series
problem where a neural network is trained to model a levitated magnet.

[x,t] = maglev_dataset;

net = narxnet(1:2,1:2,10);

[X,Xi,Ai,T] = preparets(net,x,{},t);

net2 = train(net,X,T,Xi,Ai,'CheckpointFile','MyCheckpoint.mat','CheckpointDelay',10);

22-Mar-2013 04:59:28 First Checkpoint #1: /WorkingDir/MyCheckpoint.mat

22-Mar-2013 04:59:38 Write Checkpoint #2: /WorkingDir/MyCheckpoint.mat

22-Mar-2013 04:59:48 Write Checkpoint #3: /WorkingDir/MyCheckpoint.mat

22-Mar-2013 04:59:58 Write Checkpoint #4: /WorkingDir/MyCheckpoint.mat

22-Mar-2013 05:00:08 Write Checkpoint #5: /WorkingDir/MyCheckpoint.mat

22-Mar-2013 05:00:09 Final Checkpoint #6: /WorkingDir/MyCheckpoint.mat

After a computer failure or training interruption, the checkpoint structure containing
the best neural network obtained before the interruption and the training record can be
reloaded. In this case the stage field value is 'Final', indicating the last save was at
the final epoch, because training completed successfully. The first epoch checkpoint is
indicated by 'First', and intermediate checkpoints by 'Write'.

load('MyCheckpoint.mat')

checkpoint = 

      file: '/WorkingDir/MyCheckpoint.mat'

      time: [2013 3 22 5 0 9.0712]

    number: 6

     stage: 'Final'

       net: [1x1 network]

        tr: [1x1 struct]

Training can be resumed from the last checkpoint by reloading the dataset (if necessary),
then calling train with the recovered network.

net = checkpoint.net;

[x,t] = maglev_dataset;

load('MyCheckpoint.mat');

[X,Xi,Ai,T] = preparets(net,x,{},t);

net2 = train(net,X,T,Xi,Ai,'CheckpointFile’,'MyCheckpoint.mat','CheckpointDelay',10);

For more information, see Automatically Save Checkpoints During Neural Network
Training.
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Simpler Notation for Networks with Single Inputs and Outputs

The majority of neural networks have a single input and single output. You can now
refer to the input and output of such networks with the properties net.input and
net.output, without the need for cell array indices.

Here a feed-forward neural network is created and its input and output properties
examined.

net = feedforwardnet(10);

net.input

net.output

The net.inputs{1} notation for the input and net.outputs{2} notation for the
second layer output continue to work. The cell array notation continues to be required for
networks with multiple inputs and outputs.

For more information, see Neural Network Object Properties.

Neural Network Efficiency Properties Are Now Obsolete

The neural network property net.efficiency is no longer shown when a network
object properties are displayed. The following line of code displays the properties of a
feed-forward network.

net = feedforwardnet(10)

Compatibility Considerations

The efficiency properties are still supported and do not yet generate warnings, so
backward compatibility is maintained. However the recommended way to use memory
reduction is no longer to set net.efficiency.memoryReduction. The recommended
notation since R2012b is to use optional training arguments:

[x,t] = vinyl_dataset;

net = feedforwardnet(10);

net = train(net,x,t,'Reduction',10);

Memory reduction is a way to trade off training time for lower memory requirements
when using Jacobian training such as trainlm and trainbr. The MemoryReduction
value indicates how many passes must be made to simulate the network and calculate its
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gradients each epoch. The storage requirements go down as the memory reduction goes
up, although not necessarily proportionally. The default MemoryReduction is 1, which
indicates no memory reduction.
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Speed and memory efficiency enhancements for neural network training
and simulation

The neural network simulation, gradient, and Jacobian calculations are reimplemented
with native MEX-functions in Neural Network Toolbox™ Version 8.0. This results in
faster speeds, especially for small to medium network sizes, and for long time-series
problems.

In Version 7, typical code for training and simulating a feed-forward neural network
looks like this:

 [x,t] = house_dataset;

 net = feedforwardnet(10);

 view(net)

 net = train(net,x,t);

 y = net(x);

In Version 8.0, the above code does not need to be changed, but calculations now happen
in compiled native MEX code.

Speedups of as much as 25% over Version 7.0 have been seen on a sample system (4-core
2.8 GHz Intel i7 with 12 GB RAM).

Note that speed improvements measured on the sample system might vary significantly
from improvements measured on other systems due to different chip speeds, memory
bandwidth, and other hardware and software variations.

The following code creates, views, and trains a dynamic NARX neural network model of a
maglev system in open-loop mode.

[x,t] = maglev_dataset;

net = narxnet(1:2,1:2,10);

view(net)

[X,Xi,Ai,T] = preparets(net,x,{},t);

net = train(net,X,T,Xi,Ai);
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y = net(X,Xi,Ai)

The following code measures training speed over 10 training sessions, with the training
window disabled to avoid GUI timing interference.

On the sample system, this ran three times (3x) faster in Version 8.0 than in Version 7.0.

rng(0)

[x,t] = maglev_dataset;

net = narxnet(1:2,1:2,10);

[X,Xi,Ai,T] = preparets(net,x,{},t);

net.trainParam.showWindow = false;

tic

for i=1:10

  net = train(net,X,T,Xi,Ai);

end

toc

The following code trains the network in closed-loop mode:

[x,t] = maglev_dataset;

net = narxnet(1:2,1:2,10);

net = closeloop(net);

view(net)

[X,Xi,Ai,T] = preparets(net,x,{},t);

net = train(net,X,T,Xi,Ai);

For this case, and most closed-loop (recurrent) network training, Version 8.0 ran the code
more than one-hundred times (100x) faster than Version 7.0.
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A dramatic example of where the improved closed loop training speed can help is when
training a NARX network model of a double pendulum. By initially training the network
in open-loop mode, then in closed-loop mode with two time step sequences, then three
time step sequences, etc., a network has been trained that can simulate the system for
500 time steps in closed-loop mode. This corresponds to a 500 step ahead prediction.
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Because of the Version 8.0 MEX speedup, this only took a few hours, as apposed to the
months it would have taken in Version 7.0.

MEX code is also far more memory efficient. The amount of RAM used for intermediate
variables during training and simulation is now relatively constant, instead of growing
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linearly with the number of samples. In other words, a problem with 10,000 samples
requires the same temporary storage as a problem with only 100 samples.

This memory efficiency means larger problems can be trained on a single computer.

Compatibility Considerations

For very large networks, MEX code might fall back to MATLAB code. If this happens
and memory availability becomes an issue, use the 'reduction' option to implement
memory reduction. The reduction number indicates the number of passes to make
through the data for each calculation. Each pass calculates with a fraction of the data,
and the results are combined after all passes are complete. This trades off lower memory
requirements for longer calculation times.

net = train(net,x,t,'reduction',10);

y = net(x,'reduction',10);

The previous way to indicate memory reduction was to set the
net.efficiency.memoryReduction property before training:

net.efficiency.memoryReduction = N;

This continues to work in Version 8.0, but it is recommended that you update your code
to use the 'reduction' option for train and network simulation. Additional name-value
pair arguments are the standard way to indicate calculation options.

Speedup of training and simulation with multicore processors and
computer clusters using Parallel Computing Toolbox

Parallel Computing Toolbox allows Neural Network Toolbox simulation, and gradient
and Jacobian calculations to be parallelized across multiple CPU cores, reducing
calculation times. Parallelization splits the data among several workers. Results for the
whole dataset are combined after all workers have completed their calculations.
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Note that, during training, the calculation of network outputs, performance, gradient,
and Jacobian calculations are parallelized, while the main training code remains on one
worker.

To train a network on the house_dataset problem, introduced above, open a local
MATLAB pool of workers, then call train and sim with the new 'useParallel' option
set to 'yes'.

matlabpool open

numWorkers = matlabpool('size')
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If calling matlabpool produces an error, it might be that Parallel Computing Toolbox is
not available.

[x,t] = house_dataset;

net = feedforwardnet(10);

net = train(net,x,t,'useParallel','yes');

y = sim(net,'useParallel','yes');

On the sample system with a pool of four cores, typical speedups have been between 3x
and 3.7x. Using more than four cores might produce faster speeds. For more information,
see Parallel and GPU Computing.

GPU computing support for training and simulation on single and
multiple GPUs using Parallel Computing Toolbox

Parallel Computing Toolbox allows Neural Network Toolbox simulation and training to
be parallelized across the multiprocessors and cores of a graphics processing unit (GPU).

To train and simulate with a GPU set the 'useGPU' option to 'yes'. Use the gpuDevice
command to get information on your GPU.

gpuInfo = gpuDevice

If calling gpuDevice produces an error, it might be that Parallel Computing Toolbox is
not available.

Training on GPUs cannot be done with Jacobian algorithms, such as trainlm or
trainbr, but it can be done with any of the gradient algorithms such as trainscg. If
you do not change the training function, it will happen automatically.

[x,t] = house_dataset;

net = feedforwardnet(10);

net.trainFcn = 'trainscg';

net = train(net,x,t,'useGPU','yes');

y = sim(net,'useGPU','yes');

Speedups on the sample system with an nVidia GTX 470 GPU card have been between
3x and 7x, but might increase as GPUs continue to improve.

You can also use multiple GPUs. If you set both 'useParallel' and 'useGPU' to
'yes', any worker associated with a unique GPU will use that GPU, and other workers
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will use their CPU core. It is not efficient to share GPUs between workers, as that would
require them to perform their calculations in sequence instead of in parallel.

numWorkers = matlabpool('size')

numGPUs = gpuDeviceCount

[x,t] = house_dataset;

net = feedforwardnet(10);

net.trainFcn = 'trainscg';

net = train(net,x,t,'useParallel','yes','useGPU','yes');

y = sim(net,'useParallel','yes','useGPU','yes');

Tests with three GPU workers and one CPU worker on the sample system have seen
3x or higher speedup. Depending on the size of the problem, and how much it uses the
capacity of each GPU, adding GPUs might increase speed or might simply increase the
size of problem that can be run.

In some cases, training with both GPUs and CPUs can result in slower speeds than just
training with the GPUs, because the CPUs might not keep up with the GPUs. In this
case, set 'useGPU' to 'only' and only GPU workers will be used.

[x,t] = house_dataset;

net = feedforwardnet(10);

net = train(net,x,t,'useParallel','yes','useGPU','only');

y = sim(net,'useParallel','yes','useGPU','only');

For more information, see Parallel and GPU Computing.

Distributed training of large datasets on computer clusters using MATLAB
Distributed Computing Server

Besides allowing load balancing, Composite data also allows datasets too large to fit
within the RAM of a single computer to be distributed across the RAM of a cluster.

This is done by loading the Composite sequentially. For instance, here the sub-datasets
are loaded from files as they are distributed:

Xc = Composite;

Tc = Composite;

for i=1:10

  data = load(['dataset' num2str(i)])

  Xc{i} = data.x;

  Tc{i} = data.t;
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  clear data

end

This technique allows for training with datasets of any size, limited only by the available
RAM across an entire cluster.

For more information, see Parallel and GPU Computing.

Elliot sigmoid transfer function for faster simulation

The new transfer function elliotsig calculates its output without using the exp function
used by both tansig and logsig. This lets it execute much faster, especially on
deployment hardware that might either not support exp or which implements it with
software that takes many more execution cycles than simple arithmetic operations.

This example displays a plot of elliotsig alongside tansig:

n = -10:0.01:10;

a1 = elliotsig(n);

a2 = tansig(n);

h = plot(n,a1,n,a2);

legend(h,'ELLIOTSIG','TANSIG','Location','NorthWest')

To set up a neural network to use the elliotsig transfer function, change each tansig
layer’s transfer function with its transferFcn property. For instance, here a network
using elliotsig is created, viewed, trained, and simulated:

[x,t] = house_dataset;
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net = feedforwardnet(10);

view(net) % View TANSIG network

net.layers{1}.transferFcn = 'elliotsig';

view(net) % View ELLIOTSIG network

net = train(net,x,t);

y = net(x)

The elliotsig transfer function might be even faster on an Intel® processor.

n = rand(1000,1000);

tic, for i=1:100, a = elliotsig(n); end, elliotsigTime = toc

tic, for i=1:100, a = tansig(n); end, tansigTime = toc

speedup = tansigTime / elliotsigTime

On one system the speedup was almost 3x.

However, because of the different shape, elliotsig might not result in faster training
than tansig. It might require more training steps. For simulation, elliotsig is always
faster.

For more information, see Fast Elliot Sigmoid.

Faster training and simulation with computer clusters using MATLAB
Distributed Computing Server

If a MATLAB pool is opened using a cluster of computers, the previous parallel training
and simulations happen across the CPU cores and GPUs of all the computers in the pool.

10-10

http://www.mathworks.com/help/releases/R2012b/nnet/ug/speed-and-memory-optimizations.html#btldch1-1


 

For problems with hundreds of thousands or millions of samples, this might result in
considerable speedup.

For more information, see Parallel and GPU Computing.

Load balancing parallel calculations

When training and simulating a network using the 'useParallel' option, the dataset
is automatically divided into equal parts across the workers. However, if different
workers have different speed and memory limitations, it can be helpful to adjust the
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amount of data sent to each worker, so that the faster workers or those with more
memory have proportionally more data.

This is done using the Parallel Computing Toolbox function Composite. Composite data
is data spread across a parallel pool of MATLAB workers.

For instance, if a parallel pool is open with four workers, data can be distributed as
follows:

[x,t] = house_dataset;

Xc = Composite;

Tc = Composite;

Xc{1} = x(:,   1:150); % First  150 samples of x

Tc{1} = x(:,   1:150); % First  150 samples of t

Xc{2} = x(:, 151:300); % Second 150 samples of x

Tc{2} = x(:, 151:300); % Second 150 samples of t

Xc{3} = x(:, 301:403); % Third  103 samples of x

Tc{3} = x(:, 301:403); % Third  103 samples of t

Xc{4} = x(:, 404:506); % Fourth 103 samples of x

Tc{4} = x(:, 404:506); % Fourth 103 samples of t

When you call train, the 'useParallel' option is not needed, because train
automatically trains in parallel when using Composite data.

net = train(net,Xc,Tc);

If you want workers 1 and 2 to use GPU devices 1 and 2, while workers 3 and 4 use
CPUs, set up data for workers 1 and 2 using nndata2gpu inside an spmd clause.

spmd

  if labindex <= 2

    Xc = nndata2gpu(Xc);

    Tc = nndata2gpu(Tc);

  end

end
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The function nndata2gpu takes a neural network matrix or cell array time series
data and converts it to a properly sized gpuArray on the worker’s GPU. This involves
transposing the matrices, padding the columns so their first elements are memory
aligned, and combining matrices, if the data was a cell array of matrices. To reverse
process outputs returned after simulation with gpuArray data, use gpu2nndata to
convert back to a regular matrix or a cell array of matrices.

As with 'useParallel', the data type removes the need to specify 'useGPU'. Training
and simulation automatically recognize that two of the workers have gpuArray data and
employ their GPUs accordingly.

net = train(net,Xc,Tc);

This way, any variation in speed or memory limitations between workers can be
accounted for by putting differing numbers of samples on those workers.

For more information, see Parallel and GPU Computing.

Summary and fallback rules of computing resources used from train and
sim

The convention used for computing resources requested by options 'useParallel' and
'useGPU' is that if the resource is available it will be used. If it is not, calculations still
occur accurately, but without that resource. Specifically:

1 If 'useParallel' is set to 'yes', but no MATLAB pool is open, then computing
occurs in the main MATLAB thread and is not distributed across workers.

2 If 'useGPU' is set to 'yes', but there is not a suppported GPU device selected, then
computing occurs on the CPU.

3 If 'useParallel' and 'useGPU' are set to 'yes', each worker uses a GPU if it
is the first worker with a particular supported GPU selected, or uses a CPU core
otherwise.

4 If 'useParallel' is set to 'yes' and 'useGPU' is set to 'only', then only
the first worker with a supported GPU is used, and other workers are not used.
However, if no GPUs are available, calculations revert to parallel CPU cores.

Set the 'showResources' option to 'yes' to check what resources are actually being
used, as opposed to requested for use, when training and simulating.

10-13

http://www.mathworks.com/help/releases/R2012b/nnet/ug/parallel-and-gpu-computing.html


R2012b

Example: View computing resources

[x,t] = house_dataset;

net = feedforwardnet(10);

net2 = train(net,x,t,'showResources','yes');

y = net2(x,'showResources','yes');

Computing Resources:

MEX on PCWIN64

net2 = train(net,x,t,'useParallel','yes','showResources','yes');

y = net2(x,'useParallel','yes','showResources','yes');

Computing Resources:

  Worker 1 on Computer1, MEX on PCWIN64

  Worker 2 on Computer1, MEX on PCWIN64

  Worker 3 on Computer1, MEX on PCWIN64

  Worker 4 on Computer1, MEX on PCWIN64

net2 = train(net,x,t,'useGPU','yes','showResources','yes');

y = net2(x,'useGPU','yes','showResources','yes');

Computing Resources:

GPU device 1, TypeOfCard

net2 = train(net,x,t,'useParallel','yes','useGPU','yes',...

                                              'showResources','yes');

y = net2(x,'useParallel','yes','useGPU','yes','showResources','yes');

Computing Resources:

  Worker 1 on Computer1, GPU device 1, TypeOfCard

  Worker 2 on Computer1, GPU device 2, TypeOfCard

  Worker 3 on Computer1, MEX on PCWIN64

  Worker 4 on Computer1, MEX on PCWIN64

net2 = train(net,x,t,'useParallel','yes','useGPU','only',...

                                               'showResources','yes');

y = net2(x,'useParallel','yes','useGPU','only','showResources','yes');

Computing Resources:

  Worker 1 on Computer1, GPU device 1, TypeOfCard

  Worker 2 on Computer1, GPU device 2, TypeOfCard
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Updated code organization

The code organization for data processing, weight, net input, transfer, performance,
distance and training functions are updated. Custom functions of these kinds need to be
updated to the new organization.

In Version 8.0 the related functions for neural network processing are in package folders,
so each local function has its own file.

For instance, in Version 7.0 the function tansig contained a large switch statement and
several local functions. In Version 8.0 there is a root function tansig, along with several
package functions in the folder /toolbox/nnet/nnet/nntransfer/+tansig/.

 +tansig/activeInputRange.m

 +tansig/apply.m

 +tansig/backprop.m

 +tansig/da_dn.m

 +tansig/discontinuity.m

 +tansig/forwardprop.m

 +tansig/isScalar.m

 +tansig/name.m

 +tansig/outputRange.m

 +tansig/parameterInfo.m

 +tansig/simulinkParameters.m

 +tansig/type.m

Each transfer function has its own package with the same set of package functions. For
lists of processing, weight, net input, transfer, performance, and distance functions, each
of which has its own package, type the following:

 help nnprocess

 help nnweight

 help nnnetinput

 help nntransfer

 help nnperformance

 help nndistance

The calling interfaces for training functions are updated for the new calculation modes
and parallel support. Normally, training functions would not be called directly, but
indirectly by train, so this is unlikely to require any code changes.
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Compatibility Considerations

Due to the new package organization for processing, weight, net input, transfer,
performance and distance functions, any custom functions of these types will need to be
updated to conform to this new package system before they will work with Version 8.0.

See the main functions and package functions for mapminmax, dotprod, netsum,
tansig, mse, and dist for examples of this new organization. Any of these functions and
its package functions may be used as a template for new or updated custom functions.

Due to the new calling interfaces for training functions, any custom backpropagation
training function will need to be updated to work with Version 8.0. See trainlm and
trainscg for examples that can be used as templates for any new or updated custom
training function.
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New Neural Network Start GUI

The new nnstart function opens a GUI that provides links to new and existing Neural
Network Toolbox GUIs and other resources. The first panel of the GUI opens four
"getting started" wizards.

The second panel provides links to other toolbox starting points.
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New Time Series GUI and Tools

The new ntstool function opens a wizard GUI that allows time series problems to be
solved with three kinds of neural networks: NARX networks (neural auto-regressive with
external input), NAR networks (neural auto-regressive), and time delay neural networks.
It follows a similar format to the neural fitting (nftool), clustering (nctool), and pattern
recognition (nprtool) tools.

Network diagrams shown in the Neural Time Series Tool, Neural Training Tool, and
with the view(net) command, have been improved to show tap delay lines in front of
weights, the sizes of inputs, layers and outputs, and the time relationship of inputs and
outputs. Open loop feedback outputs and inputs are indicated with matching tab and
indents in their respective blocks.
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The Save Results panel of the Neural Network Time Series Tool allows you to generate
both a Simple Script, which demonstrates how to get the same results as were obtained
with the wizard, and an Advanced Script, which provides an introduction to more
advanced techniques.

The Train Network panel of the Neural Network Time Series Tool introduces four new
plots, which you can also access from the Network Training Tool and the command line.

The error histogram of any static or dynamic network can be plotted.

plotresponse(errors)
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The dynamic response can be plotted, with colors indicating how targets were assigned
to training, validation and test sets across timesteps. (Dividing data by timesteps and
other criteria, in addition to by sample, is a new feature described in “New Time Series
Validation” on page 14-9.)

plotresponse(targets,outputs)

The autocorrelation of error across varying lag times can be plotted.

ploterrcorr(errors)
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The input-to-error correlation can also be plotted for varying lags.

plotinerrcorr(inputs,errors)

Simpler time series neural network creation is provided for NARX and time-delay
networks, and a new function creates NAR networks. All the network diagrams shown
here are generated with the command view(net).

net = narxnet(inputDelays, feedbackDelays, hiddenSizes, 

feedbackMode, trainingFcn

net = narnet(feedbackDelays, hiddenSizes, feedbackMode, 

trainingFcn)

net = timedelaynet(inputDelays, hiddenSizes, trainingFcn)
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Several new data sets provide sample problems that can be solved with these networks.
These data sets are also available within the ntstool GUI and the command line.

[x, t] = simpleseries_dataset;

[x, t] = simplenarx_dataset;

[x, t] = exchanger_dataset;

[x, t] = maglev_dataset;

[x, t] = ph_dataset;

[x, t] = pollution_dataset;

[x, t] = refmodel_dataset;

[x, t] = robotarm_dataset;

[x, t] = valve_dataset;

The preparets function formats input and target time series for time series networks,
by shifting the inputs and targets as needed to fill initial input and layer delay states.
This function simplifies what is normally a tricky data preparation step that must be
customized for details of each kind of network and its number of delays.

[x, t] = simplenarx_dataset;

net = narxnet(1:2, 1:2, 10);

[xs, xi, ai, ts] = preparets(net, x, {}, t);

net = train(net, xs, ts, xi, ai);

y = net(xs, xi, ai)

The output-to-input feedback of NARX and NAR networks (or custom time series
network with output-to-input feedback loops) can be converted between open- and closed-
loop modes using the two new functions closeloop and openloop.

net = narxnet(1:2, 1:2, 10);

net = closeloop(net)

net = openloop(net)
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The total delay through a network can be adjusted with the two new functions
removedelay and adddelay. Removing a delay from a NARX network which has a
minimum input and feedback delay of 1, so that it now has a minimum delay of 0, allows
the network to predict the next target value a timestep ahead of when that value is
expected.

net = removedelay(net)

net = adddelay(net)

The new function catsamples allows you to combine multiple time series into a single
neural network data variable. This is useful for creating input and target data from
multiple input and target time series.

x = catsamples(x1, x2, x3);

t = catsamples(t1, t2, t3);

In the case where the time series are not the same length, the shorter time series can
be padded with NaN values. This will indicate “don't care” or equivalently “don't know”
input and targets, and will have no effect during simulation and training.

x = catsamples(x1, x2, x3, 'pad')

t = catsamples(t1, t2, t3, 'pad')

Alternatively, the shorter series can be padded with any other value, such as zero.
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x = catsamples(x1, x2, x3, 'pad', 0)

There are many other new and updated functions for handling neural network data,
which make it easier to manipulate neural network time series data.

help nndatafun

New Time Series Validation

Normally during training, a data set's targets are divided up by sample into training,
validation and test sets. This allows the validation set to stop training at a point of
optimal generalization, and the test set to provide an independent measure of the
network's accuracy. This mode of dividing up data is now indicated with a new property:

net.divideMode = 'sample'

However, many time series problems involve only a single time series. In order to support
validation you can set the new property to divide data up by timestep. This is the default
setting for NARXNET and other time series networks.

net.divideMode = 'time'

This property can be set manually, and can be used to specify dividing up of targets
across both sample and timestep, by all target values (i.e., across sample, timestep, and
output element), or not to perform data division at all.

net.divideMode = 'sampletime'

net.divideMode = 'all'

net.divideMode = 'none'

New Time Series Properties

Time series feedback can also be controlled manually with new network properties that
represent output-to-input feedback in open- or closed-loop modes. For open-loop feedback
from an output from layer i back to input j, set these properties as follows:

net.inputs{j}.feedbackOutput = i

net.outputs{i}.feedbackInput = j

net.outputs{i}.feedbackMode = 'open'

When the feedback mode of the output is set to 'closed', the properties change to
reflect that the output-to-input feedback is now implemented with internal feedback by
removing input j from the network, and having output properties as follows:

14-9



R2010b

net.outputs{i}.feedbackInput = [];

net.outputs{i}.feedbackMode = 'closed'

Another output property keeps track of the proper closed-loop delay, when a network is
in open-loop mode. Normally this property has this setting:

net.outputs{i}.feedbackDelay = 0

However, if a delay is removed from the network, it is updated to 1, to indicate that the
network's output is actually one timestep ahead of its inputs, and must be delayed by 1 if
it is to be converted to closed-loop form.

net.outputs{i}.feedbackDelay = 1

New Flexible Error Weighting and Performance

Performance functions have a new argument list that supports error weights for
indicating which target values are more important than others. The train function also
supports error weights.

net = train(net, x, t, xi, ai, ew)

perf = mse(net, x, t, ew)

You can define error weights by sample, output element, time step, or network output:

ew = [1.0 0.5 0.7 0.2];      % Weighting errors across 4 samples

ew = [0.1; 0.5; 1.0];        % ... across 3 output elements

ew = {0.1 0.2 0.3 0.5 1.0};  % ... across 5 timesteps

ew = {1.0; 0.5};             % ... across 2 network outputs

These can also be defined across any combination. For example, weighting error across
two time series (i.e., two samples) over four timesteps:

ew = {[0.5 0.4], [0.3 0.5], [1.0 1.0], [0.7 0.5]};

In the general case, error weights can have exactly the same dimension as targets, where
each target has an associated error weight.

Some performance functions are now obsolete, as their functionality has been
implemented as options within the four remaining performance functions: mse, mae, sse,
and sae.

The regularization implemented in msereg and msnereg is now implemented with a
performance property supported by all four remaining performance functions.
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% Any value between the default 0 and 1.

net.performParam.regularization 

The error normalization implemented in msne and msnereg is now implemented with a
normalization property.

% Either 'normalized', 'percent', or the default 'none'.

net.performParam.normalization 

A third performance parameter indicates whether error weighting is applied to square
errors (the default for mse and sse) or the absolute errors (mae and sae).

net.performParam.squaredWeighting  % true or false

Compatibility Considerations

The old performance functions and old performance arguments lists continue to work as
before, but are no longer recommended.

New Real Time Workshop and Improved Simulink Support

Neural network Simulink blocks now compile with Real Time Workshop® and are
compatible with Rapid Accelerator mode.

gensim has new options for generating neural network systems in Simulink.

Name - the system name
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SampleTime - the sample time

InputMode - either port, workspace, constant, or none.

OutputMode - either display, port, workspace, scope, or none

SolverMode - either default or discrete

For instance, here a NARX network is created and set up in MATLAB to use workspace
inputs and outputs.

[x, t] = simplenarx_dataset;

net = narxnet(1:2, 1:2, 10);

[xs, xi, ai, ts] = preparets(net, x, {}, t);

net = train(net, xs, ts, xi, ai);

net = closeloop(net);

[sysName, netName] = gensim(net, 'InputMode', 'workspace', ...

           'OutputMode', 'workspace', 'SolverMode', 'discrete');

Simulink neural network blocks now allow initial conditions for input and layer delays
to be set directly by double-clicking the neural network block. setsiminit and getsiminit
provide command-line control for setting and getting input and layer delays for a neural
network Simulink block.

setsiminit(sysName, netName, net, xi, ai);

New Documentation Organization and Hyperlinks

The User's Guide has been rearranged to better focus on the workflow of practical
applications. The Getting Started section has been expanded.
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References to functions throughout the online documentation and command-line help
now link directly to their function pages.

help feedforwardnet

The command-line output of neural network objects now contains hyperlinks to
documentation. For instance, here a feed-forward network is created and displayed. Its
command-line output contains links to network properties, function reference pages, and
parameter information.

net = feedforwardnet(10);

Subobjects of the network, such as inputs, layers, outputs, biases, weights, and
parameter lists also display with links.

net.inputs{1}

net.layers{1}

net.outputs{2}

net.biases{1}

net.inputWeights{1, 1}

net.trainParam

The training tool nntraintool and the wizard GUIs nftool, nprtool, nctool, and ntstool,
provide numerous hyperlinks to documentation.

New Derivative Functions and Property

New functions give convenient access to error gradient (of performance with respect to
weights and biases) and Jacobian (of error with respect to weights and biases) calculated
by various means.

staticderiv - Backpropagation for static networks

bttderiv - Backpropagation through time

fpderiv - Forward propagation

num2deriv - Two-point numerical approximation

num5deriv - Five-point numerical approximation

defaultderiv - Chooses recommended derivative function for the network

For instance, here you can calculate the error gradient for a newly created and
configured feedforward network.

net = feedforwardnet(10);

[x, t] = simplefit_dataset;
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net = configure(net, x, t);

d = staticderiv('dperf_dwb', net, x, t)

Improved Network Creation

New network creation functions have clearer names, no longer need example data, and
have argument lists reduced to only the arguments recommended for most applications.
All arguments have defaults, so you can create simple networks by calling network
functions without any arguments. New networks are also more memory efficient, as they
no longer need to store sample input and target data for proper configuration of input
and output processing settings.

% New function

net = feedforwardnet(hiddenSizes, trainingFcn)

% Old function

net = newff(x,t,hiddenSizes, transferFcns, trainingFcn, ...

      learningFcn, performanceFcn, inputProcessingFcns, ...

      outputProcessingFcns, dataDivisionFcn)

The new functions (and the old functions they replace) are:

feedforwardnet (newff)
cascadeforwardnet (newcf)
competlayer (newc)
distdelaynet (newdtdnn)
elmannet (newelm)
fitnet (newfit)
layrecnet (newlrn)
linearlayer (newlin)
lvqnet (newlvq)
narxnet (newnarx, newnarxsp)
patternnet (newpr)
perceptron (newp)
selforgmap (newsom)
timedelaynet (newtdnn)

The network's inputs and outputs are created with size zero, then configured for data
when train is called or by optionally calling the new function configure.

net = configure(net, x, t)
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Unconfigured networks can be saved and reused by configuring them for many different
problems. unconfigure sets a configured network's inputs and outputs to zero, in a
network which can later be configured for other data.

net = unconfigure(net)

Compatibility Considerations

Old functions continue working as before, but are no longer recommended.

Improved GUIs

The neural fitting nftool, pattern recognition nprtool, and clustering nctool GUIs have
been updated with links back to the nnstart GUI. They give the option of generating
either simple or advanced scripts in their last panel. They also confirm with you when
closing, if a script has not been generated, or the results not yet saved.

Improved Memory Efficiency

Memory reduction, the technique of splitting calculations up in time to reduce memory
requirements, has been implemented across all training algorithms for both gradient
and network simulation calculations. Previously it was only supported for gradient
calculations with trainlm and trainbr.

To set the memory reduction level, use this new property. The default is 1, for no memory
reduction. Setting it to 2 or higher splits the calculations into that many parts.

net.efficiency.memoryReduction

Compatibility Considerations

The trainlm and trainbr training parameter MEM_REDUC is now obsolete. References
to it will need to be updated. Code referring to it will generate a warning.

Improved Data Sets

All data sets in the toolbox now have help, including example solutions, and can be
accessed as functions:

help simplefit_dataset
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[x, t] = simplefit_dataset;

See help for a full list of sample data sets:

help nndatasets

Updated Argument Lists

The argument lists for the following types of functions, which are not generally called
directly, have been updated.

The argument list for training functions, such as trainlm, traingd, etc., have been
updated to match train. The argument list for the adapt function adaptwb has been
updated. The argument list for the layer and network initialization functions, initlay,
initnw, and initwb have been updated.

Compatibility Considerations

Any custom functions of these types, or code which calls these functions manually, will
need to be updated.

14-16

http://www.mathworks.com/help/releases/R2012a/toolbox/nnet/ref/trainlm.html
http://www.mathworks.com/help/releases/R2012a/toolbox/nnet/ref/traingd.html
http://www.mathworks.com/help/releases/R2012a/toolbox/nnet/ref/train.html
http://www.mathworks.com/help/releases/R2012a/toolbox/nnet/ref/adaptwb.html
http://www.mathworks.com/help/releases/R2012a/toolbox/nnet/ref/initlay.html
http://www.mathworks.com/help/releases/R2012a/toolbox/nnet/ref/initnw.html
http://www.mathworks.com/help/releases/R2012a/toolbox/nnet/ref/initwb.html


R2010a
Version: 6.0.4

Bug Fixes





R2009b
Version: 6.0.3

Bug Fixes





R2009a
Version: 6.0.2

Bug Fixes





R2008b
Version: 6.0.1

Bug Fixes





R2008a
Version: 6.0

New Features

Bug Fixes

Compatibility Considerations



R2008a

New Training GUI with Animated Plotting Functions

Training networks with the train function now automatically opens a window that shows
the network diagram, training algorithm names, and training status information.

The window also includes buttons for plots associated with the network being trained.
These buttons launch the plots during or after training. If the plots are open during
training, they update every epoch, resulting in animations that make understanding
network performance much easier.

The training window can be opened and closed at the command line as follows:

nntraintool

nntraintool('close')

Two plotting functions associated with the most networks are:

• plotperform—Plot performance.
• plottrainstate—Plot training state.

Compatibility Considerations

To turn off the new training window and display command-line output (which was the
default display in previous versions), use these two training parameters:

net.trainParam.showWindow = false;

net.trainParam.showCommandLine = true;

New Pattern Recognition Network, Plotting, and Analysis GUI

The nprtool function opens a GUI wizard that guides you to a neural network solution for
pattern recognition problems. Users can define their own problems or use one of the new
data sets provided.

The newpr function creates a pattern recognition network at the command line. Pattern
recognition networks are feed-forward networks that solve problems with Boolean or
1-of-N targets and have confusion (plotconfusion) and receiver operating characteristic
(plotroc) plots associated with them.

The new confusion function calculates the true/false, positive/negative results from
comparing network output classification with target classes.
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New Clustering Training, Initialization, and Plotting GUI

The nctool function opens a GUI wizard that guides you to a self-organizing map solution
for clustering problems. Users can define their own problem or use one of the new data
sets provided.

The initsompc function initializes the weights of self-organizing map layers to accelerate
training. The learnsomb function implements batch training of SOMs that is orders of
magnitude faster than incremental training. The newsom function now creates a SOM
network using these faster algorithms.

Several new plotting functions are associated with self-organizing maps:

• plotsomhits—Plot self-organizing map input hits.
• plotsomnc—Plot self-organizing map neighbor connections.
• plotsomnd—Plot self-organizing map neighbor distances.
• plotsomplanes—Plot self-organizing map input weight planes.
• plotsompos—Plot self-organizing map weight positions.
• plotsomtop—Plot self-organizing map topology.

Compatibility Considerations

You can call the newsom function using conventions from earlier versions of the toolbox,
but using its new calling conventions gives you faster results.

New Network Diagram Viewer and Improved Diagram Look

The new neural network diagrams support arbitrarily connected network architectures
and have an improved layout. Their visual clarity has been improved with color and
shading.

Network diagrams appear in all the Neural Network Toolbox graphical interfaces. In
addition, you can open a network diagram viewer of any network from the command line
by typing

view(net)
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New Fitting Network, Plots and Updated Fitting GUI

The newfit function creates a fitting network that consistes of a feed-forward
backpropagation network with the fitting plot (plotfit) associated with it.

The nftool wizard has been updated to use newfit, for simpler operation, to include the
new network diagrams, and to include sample data sets. It now allows a Simulink block
version of the trained network to be generated from the final results panel.

Compatibility Considerations

The code generated by nftool is different the code generated in previous versions.
However, the code generated by earlier versions still operates correctly.

19-4

http://www.mathworks.com/help/releases/R2012a/toolbox/nnet/ref/plotfit.html
http://www.mathworks.com/help/releases/R2012a/toolbox/nnet/ref/nftool.html
http://www.mathworks.com/help/releases/R2012a/toolbox/nnet/ref/nftool.html


R2007b
Version: 5.1

New Features

Bug Fixes

Compatibility Considerations



R2007b

Simplified Syntax for Network-Creation Functions

The following network-creation functions have new input arguments to simplify the
network creation process:

• newcf

• newff

• newdtdnn

• newelm

• newfftd

• newlin

• newlrn

• newnarx

• newnarxsp

For detailed information about each function, see the corresponding reference pages.

Changes to the syntax of network-creation functions have the following benefits:

• You can now specify input and target data values directly. In the previous release,
you specified input ranges and the size of the output layer instead.

• The new syntax automates preprocessing, data division, and postprocessing of data.

For example, to create a two-layer feed-forward network with 20 neurons in its hidden
layer for a given a matrix of input vectors p and target vectors t, you can now use newff
with the following arguments:

net = newff(p,t,20);

This command also sets properties of the network such that the functions sim and train
automatically preprocess inputs and targets, and postprocess outputs.

In the previous release, you had to use the following three commands to create the same
network:

pr = minmax(p);

s2 = size(t,1);

net = newff(pr,[20 s2]);
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Compatibility Considerations

Your existing code still works but might produce a warning that you are using obsolete
syntax.

Automated Data Preprocessing and Postprocessing During Network
Creation

Automated data preprocessing and postprocessing occur during network creation in the
Network/Data Manager GUI (nntool), Neural Network Fitting Tool GUI (nftool), and at
the command line.

At the command line, the new syntax for using network-creation functions, automates
preprocessing, postprocessing, and data-division operations.

For example, the following code returns a network that automatically preprocesses the
inputs and targets and postprocesses the outputs:

net = newff(p,t,20);

net = train(net,p,t);

y = sim(net,p);

To create the same network in a previous release, you used the following longer code:

[p1,ps1] = removeconstantrows(p);

[p2,ps2] = mapminmax(p1);

[t1,ts1] = mapminmax(t);

pr = minmax(p2);

s2 = size(t1,1);

net = newff(pr,[20 s2]);

net = train(net,p2,t1);

y1 = sim(net,p2)

y = mapminmax('reverse',y1,ts1);

Default Processing Settings

The default input processFcns functions returned with a new network are, as follows:

net.inputs{1}.processFcns = ... 

              {'fixunknowns','removeconstantrows', 'mapminmax'}

These three processing functions perform the following operations, respectively:
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• fixunknowns—Encode unknown or missing values (represented by NaN) using
numerical values that the network can accept.

• removeconstantrows—Remove rows that have constant values across all samples.
• mapminmax—Map the minimum and maximum values of each row to the interval

[-1 1].

The elements of processParams are set to the default values of the fixunknowns,
removeconstantrows, and mapminmax functions.

The default output processFcns functions returned with a new network include the
following:

net.outputs{2}.processFcns = {'removeconstantrows','mapminmax'}

These defaults process outputs by removing rows with constant values across all samples
and mapping the values to the interval [-1 1].

sim and train automatically process inputs and targets using the input and output
processing functions, respectively. sim and train also reverse-process network outputs as
specified by the output processing functions.

For more information about processing input, target, and output data, see “Multilayer
Networks and Backpropagation Training” in the Neural Network Toolbox User's Guide.

Changing Default Input Processing Functions

You can change the default processing functions either by specifying optional processing
function arguments with the network-creation function, or by changing the value of
processFcns after creating your network.

You can also modify the default parameters for each processing function by changing the
elements of the processParams properties.

After you create a network object (net), you can use the following input properties to
view and modify the automatic processing settings:

• net.inputs{1}.exampleInput—Matrix of example input vectors
• net.inputs{1}.processFcns—Cell array of processing function names
• net.inputs{1}.processParams—Cell array of processing parameters

The following input properties are automatically set and you cannot change them:
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• net.inputs{1}.processSettings—Cell array of processing settings
• net.inputs{1}.processedRange—Ranges of example input vectors after

processing
• net.inputs{1}.processedSize—Number of input elements after processing

Changing Default Output Processing Functions

After you create a network object (net), you can use the following output properties to
view and modify the automatic processing settings:

• net.outputs{2}.exampleOutput—Matrix of example output vectors
• net.outputs{2}.processFcns—Cell array of processing function names
• net.outputs{2}.processParams—Cell array of processing parameters

Note These output properties require a network that has the output layer as the
second layer.

The following new output properties are automatically set and you cannot change them:

• net.outputs{2}.processSettings—Cell array of processing settings
• net.outputs{2}.processedRange—Ranges of example output vectors after

processing
• net.outputs{2}.processedSize—Number of input elements after processing

Automated Data Division During Network Creation

When training with supervised training functions, such as the Levenberg-Marquardt
backpropagation (the default for feed-forward networks), you can supply three sets
of input and target data. The first data set trains the network, the second data set
stops training when generalization begins to suffer, and the third data set provides an
independent measure of network performance.

Automated data division occurs during network creation in the Network/Data Manager
GUI, Neural Network Fitting Tool GUI, and at the command line.

At the command line, to create and train a network with early stopping that uses 20% of
samples for validation and 20% for testing, you can use the following code:

net = newff(p,t,20);
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net = train(net,p,t);

Previously, you entered the following code to accomplish the same result:

pr = minmax(p);

s2 = size(t,1);

net = newff(pr,[20 s2]);

[trainV,validateV,testV] = dividevec(p,t,0.2,0.2);

[net,tr] = train(net,trainV.P,trainV.T,[],[],validateV,testV);

For more information about data division, see “Multilayer Networks and
Backpropagation Training” in the Neural Network Toolbox User's Guide.

New Data Division Functions

The following are new data division functions:

• dividerand—Divide vectors using random indices.
• divideblock—Divide vectors in three blocks of indices.
• divideint—Divide vectors with interleaved indices.
• divideind—Divide vectors according to supplied indices.

Default Data Division Settings

Network creation functions return the following default data division properties:

• net.divideFcn = 'dividerand'

• net.divedeParam.trainRatio = 0.6;

• net.divideParam.valRatio = 0.2;

• net.divideParam.testRatio = 0.2;

Calling train on the network object net divided the set of input and target vectors into
three sets, such that 60% of the vectors are used for training, 20% for validation, and
20% for independent testing.

Changing Default Data Division Settings

You can override default data division settings by either supplying the optional data
division argument for a network-creation function, or by changing the corresponding
property values after creating the network.
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After creating a network, you can view and modify the data division behavior using the
following new network properties:

• net.divideFcn—Name of the division function
• net.divideParam—Parameters for the division function

New Simulink Blocks for Data Preprocessing

New blocks for data processing and reverse processing are available. For more
information, see “Processing Blocks” in the Neural Network Toolbox User's Guide.

The function gensim now generates neural networks in Simulink that use the new
processing blocks.

Properties for Targets Now Defined by Properties for Outputs

The properties for targets are now defined by the properties for outputs. Use the
following properties to get and set the output and target properties of your network:

• net.numOutputs—The number of outputs and targets
• net.outputConnect—Indicates which layers have outputs and targets
• net.outputs—Cell array of output subobjects defining each output and its target

Compatibility Considerations

Several properties are now obsolete, as described in the following table. Use the new
properties instead.

Recommended Property Obsolete Property

net.numOutputs net.numTargets

net.outputConnect net.targetConnect

net.outputs net.targets
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Dynamic Neural Networks

Version 5.0 now supports these types of dynamic neural networks:

Time-Delay Neural Network

Both focused and distributed time-delay neural networks are now supported. Continue
to use the newfftd function to create focused time-delay neural networks. To create
distributed time-delay neural networks, use the newdtdnn function.

Nonlinear Autoregressive Network (NARX)

To create parallel NARX configurations, use the newnarx function. To create series-
parallel NARX networks, use the newnarxsp function. The sp2narx function lets you
convert NARX networks from series-parallel to parallel configuration, which is useful for
training.

Layer Recurrent Network (LRN)

Use the newlrn function to create LRN networks. LRN networks are useful for solving
some of the more difficult problems in filtering and modeling applications.

Custom Networks

The training functions in Neural Network Toolbox are enhanced to let you train arbitrary
custom dynamic networks that model complex dynamic systems. For more information
about working with these networks, see the Neural Network Toolbox documentation.

Wizard for Fitting Data

The new Neural Network Fitting Tool (nftool) is now available to fit your data using a
neural network. The Neural Network Fitting Tool is designed as a wizard and walks you
through the data-fitting process step by step.

To open the Neural Network Fitting Tool, type the following at the MATLAB prompt:

nftool

Data Preprocessing and Postprocessing

Version 5.0 provides the following new data preprocessing and postprocessing
functionality:
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dividevec Automatically Splits Data

The dividevec function facilitates dividing your data into three distinct sets to be used
for training, cross validation, and testing, respectively. Previously, you had to split the
data manually.

fixunknowns Encodes Missing Data

The fixunknowns function encodes missing values in your data so that they can be
processed in a meaningful and consistent way during network training. To reverse this
preprocessing operation and return the data to its original state, call fixunknowns again
with 'reverse' as the first argument.

removeconstantrows Handles Constant Values

removeconstantrows is a new helper function that processes matrices by removing rows
with constant values.

mapminmax, mapstd, and processpca Are New

The mapminmax, mapstd, and processpca functions are new and perform data
preprocessing and postprocessing operations.

Compatibility Considerations

Several functions are now obsolete, as described in the following table. Use the new
functions instead.

New Function Obsolete Functions

mapminmax premnmx

postmnmx

tramnmx

mapstd prestd

poststd

trastd

processpca prepca

trapca

Each new function is more efficient than its obsolete predecessors because it
accomplishes both preprocessing and postprocessing of the data. For example, previously
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you used premnmx to process a matrix, and then postmnmx to return the data to its
original state. In this release, you accomplish both operations using mapminmax; to
return the data to its original state, you call mapminmax again with 'reverse' as the
first argument:

mapminmax('reverse',Y,PS) 

Derivative Functions Are Obsolete

The following derivative functions are now obsolete:

ddotprod

dhardlim

dhardlms

dlogsig

dmae

dmse

dmsereg

dnetprod

dnetsum

dposlin

dpurelin

dradbas

dsatlin

dsatlins

dsse

dtansig

dtribas

Each derivative function is named by prefixing a d to the corresponding function name.
For example, sse calculates the network performance function and dsse calculated the
derivative of the network performance function.

Compatibility Considerations

To calculate a derivative in this version, you must pass a derivative argument to the
function. For example, to calculate the derivative of a hyperbolic tangent sigmoid
transfer function A with respect to N, use this syntax:

A = tansig(N,FP)

dA_dN = tansig('dn',N,A,FP)

Here, the argument 'dn' requests the derivative to be calculated.
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